Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

Identifieur interne : 000577 ( Main/Exploration ); précédent : 000576; suivant : 000578

A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

Auteurs : Javier Encinar Del Dedo [Espagne] ; Natalia Gabrielli [Espagne] ; Mercè Carmona [Espagne] ; José Ayté [Espagne] ; Elena Hidalgo [Espagne]

Source :

RBID : pubmed:25806539

Descripteurs français

English descriptors

Abstract

Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.

DOI: 10.1371/journal.pgen.1005106
PubMed: 25806539
PubMed Central: PMC4373815


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.</title>
<author>
<name sortKey="Encinar Del Dedo, Javier" sort="Encinar Del Dedo, Javier" uniqKey="Encinar Del Dedo J" first="Javier" last="Encinar Del Dedo">Javier Encinar Del Dedo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gabrielli, Natalia" sort="Gabrielli, Natalia" uniqKey="Gabrielli N" first="Natalia" last="Gabrielli">Natalia Gabrielli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Carmona, Merce" sort="Carmona, Merce" uniqKey="Carmona M" first="Mercè" last="Carmona">Mercè Carmona</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ayte, Jose" sort="Ayte, Jose" uniqKey="Ayte J" first="José" last="Ayté">José Ayté</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hidalgo, Elena" sort="Hidalgo, Elena" uniqKey="Hidalgo E" first="Elena" last="Hidalgo">Elena Hidalgo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25806539</idno>
<idno type="pmid">25806539</idno>
<idno type="doi">10.1371/journal.pgen.1005106</idno>
<idno type="pmc">PMC4373815</idno>
<idno type="wicri:Area/Main/Corpus">000544</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000544</idno>
<idno type="wicri:Area/Main/Curation">000544</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000544</idno>
<idno type="wicri:Area/Main/Exploration">000544</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.</title>
<author>
<name sortKey="Encinar Del Dedo, Javier" sort="Encinar Del Dedo, Javier" uniqKey="Encinar Del Dedo J" first="Javier" last="Encinar Del Dedo">Javier Encinar Del Dedo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gabrielli, Natalia" sort="Gabrielli, Natalia" uniqKey="Gabrielli N" first="Natalia" last="Gabrielli">Natalia Gabrielli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Carmona, Merce" sort="Carmona, Merce" uniqKey="Carmona M" first="Mercè" last="Carmona">Mercè Carmona</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ayte, Jose" sort="Ayte, Jose" uniqKey="Ayte J" first="José" last="Ayté">José Ayté</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hidalgo, Elena" sort="Hidalgo, Elena" uniqKey="Hidalgo E" first="Elena" last="Hidalgo">Elena Hidalgo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona</wicri:regionArea>
<placeName>
<settlement type="city">Barcelone</settlement>
<region nuts="2" type="region">Catalogne</region>
</placeName>
<orgName type="university">Université Pompeu Fabra</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CCAAT-Binding Factor (genetics)</term>
<term>CCAAT-Binding Factor (metabolism)</term>
<term>Fos-Related Antigen-2 (genetics)</term>
<term>GATA Transcription Factors (genetics)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Starvation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigène-2 apparenté à fos (génétique)</term>
<term>Facteur de liaison à la séquence CCAAT (génétique)</term>
<term>Facteur de liaison à la séquence CCAAT (métabolisme)</term>
<term>Facteurs de transcription GATA (génétique)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Inanition (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>Fos-Related Antigen-2</term>
<term>GATA Transcription Factors</term>
<term>Glutaredoxins</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>GATA Transcription Factors</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
<term>Starvation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Antigène-2 apparenté à fos</term>
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Facteurs de transcription GATA</term>
<term>Glutarédoxines</term>
<term>Inanition</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Schizosaccharomyces</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Facteurs de transcription GATA</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de Schizosaccharomyces pombe</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25806539</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>e1005106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1005106</ELocationID>
<Abstract>
<AbstractText>Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Encinar del Dedo</LastName>
<ForeName>Javier</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gabrielli</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carmona</LastName>
<ForeName>Mercè</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ayté</LastName>
<ForeName>José</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hidalgo</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023081">CCAAT-Binding Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C459859">Fep1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051921">Fos-Related Antigen-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000603731">Fra2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C519990">Php4 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="C559907">GRX4 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D023081" MajorTopicYN="N">CCAAT-Binding Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051921" MajorTopicYN="N">Fos-Related Antigen-2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013217" MajorTopicYN="N">Starvation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25806539</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1005106</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-14-03292</ArticleId>
<ArticleId IdType="pmc">PMC4373815</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Apr;8(4):649-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):629-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 May 20;408(4):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jun;40(11):4816-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Oct 26;151(3):671-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23101633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(6):e98959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24897379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 May;24(5):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):662-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(8):e6619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19672306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jul;45(1):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12100563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Dec 24;41(51):15288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12484767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Aug 1;31(15):4332-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12888492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Jun;52(5):1427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1977 May 1;79(1-2):157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">869173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Dec 1;13(23):5764-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7988572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Sep 30;11(12):1171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8619315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 24;284(30):20249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 14;120(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):25146-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2006 Apr 1;351(1):149-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1866-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Mar;7(3):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 May;7(5):826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18375616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 8;47(27):7274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(12):3806-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435771</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
<settlement>
<li>Barcelone</li>
</settlement>
<orgName>
<li>Université Pompeu Fabra</li>
</orgName>
</list>
<tree>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Encinar Del Dedo, Javier" sort="Encinar Del Dedo, Javier" uniqKey="Encinar Del Dedo J" first="Javier" last="Encinar Del Dedo">Javier Encinar Del Dedo</name>
</region>
<name sortKey="Ayte, Jose" sort="Ayte, Jose" uniqKey="Ayte J" first="José" last="Ayté">José Ayté</name>
<name sortKey="Carmona, Merce" sort="Carmona, Merce" uniqKey="Carmona M" first="Mercè" last="Carmona">Mercè Carmona</name>
<name sortKey="Gabrielli, Natalia" sort="Gabrielli, Natalia" uniqKey="Gabrielli N" first="Natalia" last="Gabrielli">Natalia Gabrielli</name>
<name sortKey="Hidalgo, Elena" sort="Hidalgo, Elena" uniqKey="Hidalgo E" first="Elena" last="Hidalgo">Elena Hidalgo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000577 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000577 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25806539
   |texte=   A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25806539" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020